Filter

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 58 result(s)
I2D (Interologous Interaction Database) is an on-line database of known and predicted mammalian and eukaryotic protein-protein interactions. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered "predictions". It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. I2D includes data for S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.
Country
ConsensusPathDB integrates interaction networks in humans (and in the model organisms - yeast and mouse) including binary and complex protein-protein, genetic, metabolic, signaling, gene regulatory and drug-target interactions, as well as biochemical pathways. Data originate from public resources for interactions and interactions curated from the literature. The interaction data are integrated in a complementary manner to avoid redundancies.
>>>!!!<<< as stated 2017-06-09 MPIDB is no longer available under URL http://www.jcvi.org/mpidb/about.php >>>!!!<<< The microbial protein interaction database (MPIDB) aims to collect and provide all known physical microbial interactions. Currently, 24,295 experimentally determined interactions among proteins of 250 bacterial species/strains can be browsed and downloaded. These microbial interactions have been manually curated from the literature or imported from other databases (IntAct, DIP, BIND, MINT) and are linked to 26,578 experimental evidences (PubMed ID, PSI-MI methods). In contrast to these databases, interactions in MPIDB are further supported by 68,346 additional evidences based on interaction conservation, protein complex membership, and 3D domain contacts (iPfam, 3did). We do not include (spoke/matrix) binary interactions infered from pull-down experiments.
HPIDB is a public resource, which integrates experimental PPIs from various databases into a single database. The Host-Pathogen Interaction Database (HPIDB) is a genomics resource devoted to understanding molecular interactions between key organisms and the pathogens to which they are susceptible.
Wiki-Pi is a wiki resource centered on human protein-protein interactions. Wiki-Pi's intuitive search functionality allows you to retrieve and discover interactions effectively.
4DGenome is a public database that archives and disseminates chromatin interaction data. Currently, 4DGenome contains over 8,038,247 interactions curated from both experimental studies (high throughput and individual studies) and computational predictions. It covers five organisms, Homo sapiens, Mus musculus, Drosophila melanogaster, Plasmodium falciparum, and Saccharomyces cerevisiae.
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
SwissLipids is an expert curated resource that provides a framework for the integration of lipid and lipidomic data with biological knowledge and models.
Country
Starting September 2013, MINT uses the IntAct database infrastructure to limit the duplication of efforts and to optimise future software development. Data manually curated by the MINT curators can now be accessed from the IntAct homepage at the EBI. Data maintenance and release, MINT PSICQUIC and IMEx services are under the responsibility of the IntAct team, while curation effort will be carried by both groups. The MINT development team now focuses on two new developments: mentha that integrates protein interaction information curated by IMEx databases and SIGNOR a database of logic relationships between human proteins. MINT is a public repository for molecular interactions reported in peer-reviewed journals.IT is a collection of molecular interaction databases that can be used to search for, analyze and graphically display molecular interaction networks and pathways from a wide variety of species. MINT is comprised of separate database components. HomoMINT, is an inferred human protein interatction database. Domino, is database of domain peptide interactions. A new component has been added called VirusMINT that explores the interactions of viral proteins with human proteins.
The Database explores the interactions of chemicals and proteins. It integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug-target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins.
Country
The Toxin and Toxin Target Database is a unique bioinformatics resource that combines detailed toxin data with comprehensive toxin target information. The focus of the T3DB is on providing mechanisms of toxicity and target proteins for each toxin. This dual nature of the T3DB, in which toxin and toxin target records are interactively linked in both directions, makes it unique from existing databases.
Country
APID Interactomes is a database that provides a comprehensive collection of protein interactomes for more than 400 organisms based in the integration of known experimentally validated protein-protein physical interactions (PPIs). Construction of the interactomes is done with a methodological approach to report quality levels and coverage over the proteomes for each organism included. In this way, APID provides interactomes from specific organisms that in 25 cases have more than 500 proteins. As a whole APID includes a comprehensive compendium of 90,379 distinct proteins and 678,441 singular interactions. The analytical and integrative effort done in APID unifies PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. In this way, 8,388 structures have been analyzed to find specific protein-protein interactions reported with details of their molecular interfaces. APID also includes a new data visualization web-tool that allows the construction of sub-interactomes using query lists of proteins of interest and the visual exploration of the corresponding networks, including an interactive selection of the properties of the interactions (i.e. the reliability of the "edges" in the network) and an interactive mapping of the functional environment of the proteins (i.e. the functional annotations of the "nodes" in the network).
The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans. BioGRID is an online interaction repository with data compiled through comprehensive curation efforts. All interaction data are freely provided through our search index and available via download in a wide variety of standardized formats.
Pathway Commons is a convenient point of access to biological pathway information collected from public pathway databases. Information is sourced from public pathway databases and is readily searched, visualized, and downloaded. The data is freely available under the license terms of each contributing database.
This site offers an enormous collection of photographs of wild species and natural history objects. It covers most groups of organisms with the exception of birds and other vertebrates. The photographs are presented to illustrate biodiversity and as an aid to identification. The criterion for inclusion of a species is that it must have been, or might be expected to be, found in Britain or Ireland. BioImages follows the biological classification. Biota is a hierarchical system with species grouped in genera, genera in families, families in orders and so on up to kingdoms and superkingdoms. The datasets are linked to bioinfo: food webs and species interactions in the Biodiversity of UK and Ireland.
STRING is a database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations; they are derived from four sources: - Genomic Context - High-throughput Experiments - (Conserved) Coexpression - Previous Knowledge STRING quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable.
virus mentha archives evidence about viral interactions collected from different sources and presents these data in a complete and comprehensive way. Its data comes from manually curated protein-protein interaction databases that have adhered to the IMEx consortium. virus mentha is a resource that offers a series of tools to analyse selected proteins in the context of a network of interactions. Protein interaction databases archive protein-protein interaction (PPI) information from published articles. However, no database alone has sufficient literature coverage to offer a complete resource to investigate "the interactome". virus mentha's approach generates every week a consistent interactome (graph). Most importantly, the procedure assigns to each interaction a reliability score that takes into account all the supporting evidence. virus mentha offers direct access to viral families such as: Orthomyxoviridae, Orthoretrovirinae and Herpesviridae plus, it offers the unique possibility of searching by host organism. The website and the graphical application are designed to make the data stored in virus mentha accessible and analysable to all users.virus mentha superseeds VirusMINT. The Source databases are: MINT, DIP, IntAct, MatrixDB, BioGRID.
InnateDB is a publicly available database of the genes, proteins, experimentally-verified interactions and signaling pathways involved in the innate immune response of humans, mice and bovines to microbial infection. The database captures an improved coverage of the innate immunity interactome by integrating known interactions and pathways from major public databases together with manually-curated data into a centralised resource. The database can be mined as a knowledgebase or used with our integrated bioinformatics and visualization tools for the systems level analysis of the innate immune response.
Country
The DSMZ is the most comprehensive biological resource center worldwide. Being one of the world's largest collections, the DSMZ currently comprises more than 73,700 items, including about 31,900 different bacterial and 6,600 fungal strains, 840 human and animal cell lines, 1,500 plant viruses and antisera, 700 bacteriophages and 19,000 different types of bacterial genomic DNA. All biological materials accepted in the DSMZ collection are subject to extensive quality control and physiological and molecular characterization by our central services. In addition, DSMZ provides an extensive documentation and detailed diagnostic information on the biological materials. The unprecedented diversity and quality management of its bioresources render the DSMZ an internationally renowned supplier for science, diagnostic laboratories, national reference centers, as well as industrial partners.
Country
CORUM is a manually curated dataset of mammalian protein complexes. Annotation of protein complexes includes protein complex composition and other valuable information such as method of purification, cellular function of complexes or involvement in diseases.
Country
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner.